Package: SVDNF 0.1.11
SVDNF: Discrete Nonlinear Filtering for Stochastic Volatility Models
Implements the discrete nonlinear filter (DNF) of Kitagawa (1987) <doi:10.1080/01621459.1987.10478534> to a wide class of stochastic volatility (SV) models with return and volatility jumps following the work of Bégin and Boudreault (2021) <doi:10.1080/10618600.2020.1840995> to obtain likelihood evaluations and maximum likelihood parameter estimates. Offers several built-in SV models and a flexible framework for users to create customized models by specifying drift and diffusion functions along with an arrival distribution for the return and volatility jumps. Allows for the estimation of factor models with stochastic volatility (e.g., heteroskedastic volatility CAPM) by incorporating expected return predictors. Also includes functions to compute filtering and prediction distribution estimates, to simulate data from built-in and custom SV models with jumps, and to forecast future returns and volatility values using Monte Carlo simulation from a given SV model.
Authors:
SVDNF_0.1.11.tar.gz
SVDNF_0.1.11.zip(r-4.5)SVDNF_0.1.11.zip(r-4.4)SVDNF_0.1.11.zip(r-4.3)
SVDNF_0.1.11.tgz(r-4.4-x86_64)SVDNF_0.1.11.tgz(r-4.4-arm64)SVDNF_0.1.11.tgz(r-4.3-x86_64)SVDNF_0.1.11.tgz(r-4.3-arm64)
SVDNF_0.1.11.tar.gz(r-4.5-noble)SVDNF_0.1.11.tar.gz(r-4.4-noble)
SVDNF_0.1.11.tgz(r-4.4-emscripten)SVDNF_0.1.11.tgz(r-4.3-emscripten)
SVDNF.pdf |SVDNF.html✨
SVDNF/json (API)
# Install 'SVDNF' in R: |
install.packages('SVDNF', repos = c('https://louiszam.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 26 days agofrom:6c8ef7ca58. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 29 2024 |
R-4.5-win-x86_64 | OK | Oct 29 2024 |
R-4.5-linux-x86_64 | OK | Oct 29 2024 |
R-4.4-win-x86_64 | OK | Oct 29 2024 |
R-4.4-mac-x86_64 | OK | Oct 29 2024 |
R-4.4-mac-aarch64 | OK | Oct 29 2024 |
R-4.3-win-x86_64 | OK | Oct 29 2024 |
R-4.3-mac-x86_64 | OK | Oct 29 2024 |
R-4.3-mac-aarch64 | OK | Oct 29 2024 |
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Discrete Nonlinear Filtering Algorithm for Stochastic Volatility Models | DNF DNF.dynamicsSVM |
Discrete Nonlinear Filter Maximum Likelihood Estimation Function | DNFOptim DNFOptim.dynamicsSVM |
Stochastic Volatility Models Dynamics | dynamicsSVM |
Extract Filtering and Prediction Distribution Percentiles | extractVolPerc extractVolPerc.DNFOptim extractVolPerc.SVDNF |
Extract Log-Likelihood for 'SVDNF' and 'DNFOptim' Objects | logLik.DNFOptim logLik.SVDNF |
Simulation from Stochastic Volatility Models with Jumps | modelSim modelSim.dynamicsSVM |
Parameters Names and Order for Stochastic Volatility Models with Jumps | pars pars.dynamicsSVM |
Plot Predictions from 'DNFOptim' or 'SVDNF' Objects | plot.predict.DNFOptim plot.predict.SVDNF |
DNF Filtering Distribution Plot Function | plot.DNFOptim plot.SVDNF |
Predict Method for 'DNFOptim' and 'SVDNF' Objects | predict.DNFOptim predict.SVDNF |
Summarizing Stochastic Volatility Model Fits from the Discrete Nonlinear Filter | print.summary.DNFOptim summary.DNFOptim |